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Abstract

By employing a concomitant variable, researchers can reduce the error, increase the
precision, and maximize the power of an experimental design. Blocking and ANCOVA
are most often used to harness the power of a concomitant variable. The questions of
whetner to block or covary and how many blocks to be used if a block design is chosen
become important. This paper provides an historical review of the problem and
recommends future research to examine the problem based on three dimensions: (1) how
subjects are assigned, k2) how data are analyzed, and (3) the distributions of the variables.
In this study, (1) subjects were randomly assigned to treatments ignoring the concomitant
variable, (2) data were analyzed by one-way ANOVA; post-hoc two-block, four-block, and
eight-block ANOVA; and ANCOVA, and (3) the distributions of the concomitant and
dependent variables were normal. The Monte Carlo method was used to generate 20,000
sets of data for 8 experimental conditions (two levels of the number of subjects and four
levels of correlation between the concomitant and the dependent variables). The five
analysis procedures were examined under each experimental conditions. The results
showed that ANCOVA was more powerful than post-hoc rank blocking.

Introduction

Most educational experiments involve assigning students to treatments.

Traditional one-way analysis of variance can be used to analyze the differences among

treatments. However, differences among subjects, such as, sex, socioeconomic status, or

level of ability, often mask or obscure the effects of a treatment (Kennedy and Bush,

1985; Kirk, 1982). Nuisance variation due to such differences can be extracted from the

error variance. By controlling the concomitant (nuisance) variable, researchers often

reduce the background noise, increase the precision, and enhance the statistical power of

a design (Bonett, 1982; Keppel, 1991; Maxwell & Delaney, 1984). The most widely used

procedures to harness the power of a concomitant variable are the block design and the

analysis of covariance. The decisions on whether to block or covary and how many

blocks to be used if a block design is selected are often based on rules of thumb with no

empirical support. An empirical study that can offer the scientific foundation on which

to base such decisions is desirable.
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Historical Review of the Problem

In two classic design books, The Design of Experiment and Statistical Methods for

Research Workers, Fisher (1937; 1973) developed the analysis of variance of block design

and the analysis of covariance. He demonstrated that the precision of an experimental

design could be improved by controlling a concomitant variable in the two analysis

procedures. Lindquist (1953) used the term, treatments-by-levels design, which consist3

more than one observation in a cell, to differentiate it from the randomized complete

block design, which consists only one observation in a cell. The treatments-by-levels

design is also called the treatments-by-blocks design (Kennedy & Bush 1985). Lindquist

recommended that the treatments-by-blocks design be used over the analysis of

covariance because: (1) the treatments-by-blocks design required much less restrictive

assumptions than the analysis of covariance, (2) the computational procedure were

considerably simpler with the treatments-by-blocks design, and (3) the use of treatments-

by-blocks design permitted a study on the simple effects of the treatments at any given

block.

Gourlay (1953) compared the analysis of covariance with the randomized

complete block design in which blocks were formed by matching subjects on the

concomitant variable. He recommended that the analysis of covariance be used in

preference to the matching block technique; this view was shared by Greenberg (1953) in

a similar study.

Federer (1955) favored the block design over the analysis of covariance. He

offered the following rule of thumb: "if the experimental variation cannot be controlled

4



by stratification (blocking), then measure related variates and use covariance" (p. 483-

484). However, he also pointed out that "it may be more advantageous to use covariance

than to use stratification, since fewer degrees of freedom are usually required to control

the variation" (p. 484).

Cox (1957) developed the Apparent Imprecision measure and used it to compare

the analysis of covariance with the randomized complete block design in which blocks

were formed by ranking subjects on the concomitant variable. Based on this measure, he

found that the randomized complete block design was somewhat better than the analysis

of covariance if the correlation coefficient was less than .6 while the analysis of

covariance became appreciably better than the randomized complete block design when

the correlation coefficient was .8 or more. He suggested that the analysis of covariance

be preferable to th.. .lock design only if the correlation coefficient between the

concomitant and the dependent variable was at least .6.

The most rigorous research on this topic was conducted by Fe ldt (1958). He used

Cox's Apparent Imprecision measure to compare three experimental designs. The three

experimental designs were: (1) stratification (blocking), (2) the analysis of covariance, and

(3) the analysis of variance of difference scores. Fe ldt found the analysis of variance of

difference scores was the least precise procedure; "for p < .4 the factorial (blocking)

approach results in approximately equal or greater precision than covariance; for p > =

.6 the advantage is in favor of covariance"; and "for p < .2 and small values of N neither

covariance nor the factorial design yields appreciably greater precision thaLL a completely

randomized design" (p. 347). Fe ldt also provided a table for the optimal number of
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blocks to be used if the block design was selected. He summarized that the optimal

number of blocks tended to be larger for (1) larger values of correlation coefficients, (2)

lager numbers of subjects, and (3) smaller numbers of treatments. This study should be

considered the classic study comparing the block design and the analysis of covariance; its

findings have been quoted most often by textbooks in the area of experimental design

(e.g., Cook & Campbell, 1979; Dayton, 1970; Kennedy and Bush, 1985; Keppel, 1991;

Kirk, 1982; Myers, 1979).

In a block design, subjects ate usually grouped into blocks before the experiment

according to the value of the concomitant variable. However, there are times that the

value of the concomitant variable is not available before the experiment. When blocks

are formed after the experiment, the block design is defined as post-hoc block design.

Keppel (1973) gave advantages of the post-hoc block design over the analysis of

covariance: (1) reduction in computational effort, (2) free from the more strict

assumptions of the analysis of covariance, and (3) possibility of testing the treatment X

block interaction. However, he also pointed out two disadvantages of post-hoc blocking:

(1) impossible to calculate the within-groups mean square when cells had fewer than 2

subjects, (2) unable to adjust the treatment means for differences on the concomitant

variable.

Post-hoc blocking is popular because the value of the concomitant variable ca' be

unknown before the experiment. Nevertheless, Myers (1979) pointed out the danger of

abusing the post-hoc block design by demonstrating that reordering scores v;:thin each

treatment would not change the treatment means but generally would reduce the error
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variance, which resulted in significant Fs which "merely reflect the reduction in error

variance due to blocking rather than any variability due to treatments" (p. 155).

However, he did not consider the loss of degrees of freedom with the block design.

Bonett (1982) compared the post-hoc block design with the analysis of covariance

and offered the following rule: "if the assumptions for each method can be satisfied and

if the probability of a Type II error is of concern, the analysis of covariance will be

preferred when the form of the regression equation is known but the magnitude of the

correlation is known. Post-hoc blocking, on the other hand, will be preferred when the

magnitude of the correlation is known" (p. 38).

The only study found using the Monte Carlo method and using statistical power as

the criterion variable to compare the block design and the analysis of covariance was

performed by Maxwell and Delaney (1984). Their Ludy was limited to two treatments.

The procedures they compared were based on the following two dimensions: (1) the

method of assignment and (2) the method of data analysis. Each of the two dimension

had three levels: (1) the concomitant variable was ignored, (2) the concomitant variable

was categorized, and (3) the concomitant variable was continuous. This resulted in nine

procedures being compared. Maxwell and Delaney (1984) preferred the analysis of

covariance over the block design. They argued that "the recommendation of most

experimental design texts to consider the correlation between the dependent and

concomitant variables in choosing the best technique for utilizing a concomitant variable

is incorrect. Instead, the two factors that should be considered are whether scores on the

concomitant variable are available for all subjects prior to assigning any subjects to
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treatment conditions and whether the relationship of the dependent and concomitant

variables is linear" (p. 136). They also illustrated that the Apparent imprecision measure,

which was used in Cox's (1957) and Feldt's (1958) study, might provide a different

perspective from statistical power, but, the Apparent Imprecision measure and statistical

power are not independent.

Summary of the Review

While some research favored the block design, other research preferred the

analysis of covariance. Based on the historical review of the problem, we agree with

Maxwell and Delaney that "the relative merits of blocking and ANCOVA are more

complicated, because neither is uniformly superior to the other" (1984, p. 136). It is

likely that different procedures may be preferable to others under different experimental

conditions. One significant consequence of applying the analysis of variance of block

design and the analysis of covariance, which has been neglected often in early research

but frequently stressed in recent research, is the decrease of the probability of the Type

II error, i.e., the increase of the statistical power.

Based on the review of the relative literature, it is suggested that future research

examine the problem based on three dimensions: (1) how subjects are assigned, (2) how

data are analyzed, and (3) the distributions of and the relationship between the

concomitant and the dependent variables (i.e., considering the assumptions of the block

design and the analysis of covariance); that the experimental conditions include three

factors: (1) the number of treatments, (2) the number of subjects per treatment, and (3)

the magnitude of the relationship between the concomitant and the dependent variables;
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and that the criterion variable on which to base the comparison be the statistical power,

the Type I error (a), and the Apparent Imprecision measure.

Justification of the Study

This section providzs the rationale for selecting statistical power as the criterion

variable and using computer generated data to simulate the experiment.

Statistical Power as the Criterion Variable

The expressions; "reduce error", "increase precision", "enhance efficiency", and

"maximize statistical power"; have been used frequently and interchangeably to describe

the objective of employing a concomitant variable in the block design and the analysis of

variance (e.g., Bonett, 1985; Kennedy & Bush, 1985; Maxwell & Delaney, 1984). Among

those expressions, the term, statistical power, is unambiguously understood and

operationally defined by every researcher and every book.

The neglect of statistical power in research, textbooks, and curricula has been

constantly reported. As Cohen (1962; 1977; 1988; 1992) has stressed, one of the most

pervasive threats to the validity of the statistical conclusions reached by behavioral

research is the low statistical power. The investigation of statistical power in experiment

designs has gain more and more significance (Chase & Tucker, 1976; Sedlmeier &

Gigerenzer, 1989). Furthermore, the optimal number of blocks Maxwell and Delaney

(1984) used to compare the statistical power of the block design and the analysis of

covariance was based on the Apparent Imprecision measurewhich may not be the

optimal number of blocks to achieve statistical power. Therefore, examining the optimal

number of blocks to achieve statistical power is desirable.
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Computer Simulation

This is an empirical study using the Monte Carlo method to simulate the

experiment. The Monte Carlo method has been used effectively in examining many

sensitive properties of statistics (Harwell, Rubinstein, Hayes, & Olds, 1992; Shapiro,

Wilk, & Chen, 1968; Wilcox, Char lin, & Thompson, 1986). Computer simulations have

many advantages. "We can often simulate situations more readily on the computer than

perform the corresponding experiments in real life"; "one can also easily vary parameters

in computer experiments"; and "furthermore, the simulations tend to be very flexible in

that a whole multitude of differing models can be simulated with relative ease with

essentially the same computer code" (Jain, 1992, p. 2). Therefore, using a high speed

computer to calculate the statistical power based on empirical sampling is the most direct

and effective way to answer the research questions of this study.

Procedures

This study compared five analysis procedures under eight experimental conditions

using empirical power as the criterion (dependent) variable. The five analysis procedures

were: one-way analysis of variance; two-block, four-block, and eight-block analysis of

variance; and analysis of covariance. The eight experimental conditions were the

combinations of two levels of the number of subjects per treatment (8 and 40), and four

levels of the correlation coefficient (.0, .5, .7, and .9). For each experimental condition,

2,500 sets of data were generated using the computer. Each set of data was analyzed

using all five analysis procedures at the .05 significant level. The percentage of the

significant analyses was the empirical power, for example, if 600 out of the 1,000 analyses

; 0
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were significant, empirical power would be .6.

Statistical power is a function of three major factors: (1) the significance level, (2)

the sample size, and (3) the effect size (Dayton, Schafer, & Rogers 1973; Hinkle,

Wiersma, & Jurs, 1988; Lipsey, 1990; Sawyer & Ball, 1981). Statistical power increases

as the significance level, the sample size, or the effect size increases. In order to make

statistical power comparable among the five analysis procedures, the power of the one-

way analysis of variance was controlled at .5. Therefore, the effect sizes to achieve a

power of .5 for one-way analysis of variance were calculated before the experiment. The

calculation was based on tables provided by Cohen (1988). The effect sizes were 1.057

and 0.444 for n=8 and n=40 respectively with two treatments.

Generation and Analyses of the Data

The generation and analyses of the data were accomplished by a computer

simulation system running on the IBM 3090/400E mainframe computer at The University

of Alabama. Data were generated using the SAS commands provided by Clark and

Woodward (1992). These commands generate random data from a bivariate normal

distribution (the concomitant and the dependent variables) with a mean of 0, a variance

of 1, and the user-specified correlation coefficient. Random samples were generated

separately for each treatment. Only the means of the dependent variable of the second

treatment was transformed based on the calculated effect sizes, while the other

parameters were not changed. Data in each treatment were grouped into 2, 4, and 8

blocks by their ranks on the concomitant variable. For example, to group 40 subjects

into 4 blocks, the top 10 ranked subjects were in the first block, the 11-20 ranked subjects
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were in the second block, the 21-30 ranked subjects were in the third block, and the 31-

40 ranked subjects were in the fourth block.

The computer simulation system included one executable file and two SAS

programs (International Business Machines, 1988a; International Business Machines,

1988b; SAS Institute Inc., 1990a; SAS Institute Inc., 1990b). For each of the eight

experimental conditions, the executable file ran the first SAS program 2,500 times, then

ran the second SAS program. The computer programs under the condition of n=40 and

p =.7 is provided in the appendix. The first SAS program generated a set of data,

analyzed that set of data with the five analysis procedures being compared, and output

the results of the analyses to a data file. Alter the first SAS program had run for 2,500

times, the data file would contain 2,500 records of the results of the analyses. The

second SAS program calculated the empirical power based on the 2,500 records. Totally,

there were 20,000 (2,500 X 8) sets of data generated and 100,000 analyses conducted.

RESULTS

The resulting empirical power under each experimental condition is shown in

Table 1. Each value represents the percentage of the significant analyses out of 2,500

analyses.

Since there is only one observation per cell, we can only test the results using the

randomized complete block analysis. The outcomes of the analysis are shown in Table 2.

The overall F, the main effects, and the two-way interactions are all significant.

14



Table 1

7c1-Apirical Power (All Combinations)

Sample

Size

Correlation

Coefficient

Analysis Procedures

ANOVA Two-Block Four-Block Eight-Block ANCO VA

8

.0 51.4 50.8 49.7 46.8 48.2

.5 50.4 56.0 57.5 54.9 57.8

.7 49.6 61.9 66.4 63.9 74.0

.9 49.4 71.8 79.2 80.0 98.8

.0 49.3 49.3 49.0 49.0 49.1

.5 50.2 56.8 59.0 59.4 61.3

.7 50.5 63.5 68.7 70.4 77.7

.9 51.2 73.3 81.6 84.9 99.2

(HSD: P@NXC = 2.9 and NXC@P = 3.3)

1j
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Table 2

Summary for Randomized Complete Block Analysis

Source DF Sum of Squares Mean Square F Value Pr > F

Model 27 7654.98325000 283.51789815 663.65 0.0001

Error 12 5.12650000 0.42720833

Total 39 7660.10975000

=

Source DF Sum of Squares Mean Square F Value Pr > F

N 1 30.45025000 30.45025000 71.28 0.0001

C 3 4245.71675000 1415.23891667 3312.76 0.0001

P 4 1787.56850000 446.89212500 1046.08 0.0001

N*C 3 14.49475000 4.83158333 11.31 0.0008

N*P 4 24.05350000 6.01337500 14.08 0.0002

C*P 12 1552.69950000 129.39162500 302.88 0.0001

The randomized complete block design assumes no treatment-by-block interaction,

which is not likely true in this analysis. If a significant interaction exits, the analysis will

be conservative because of the inability to exclude interaction from the error term. Even

if they may be conservative, all sources are significant with low p-values (0.0001 - 0.0008).

Another evidence supporting the precision of this analysis is the accuracy of the resulting

power value. The power of the one-way analysis of variance was controlled at .5 before

the experiment. The resulting power values of the one-way analysis of variance have a

4
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mean of .5 and a standard deviation of .008, which indicates that the empirical power,

outcome of the analyses of 2,500 sets of data, is accurate. Therefore, the true mean

square error should be small.

The following tables provide the means for the main factors and their two-way

combinations. The means of the main factors are in the last row and the last column;

and the grand mean is at the bottom right corner.

Table 3

Empirical Power (Sample Size X Procedure)

Analysis Procedure

Sample Size ANOVA Two-Block Four-Block Eight-Block ANCOVA

8 50.2 60.1 63.2 61.4 69.7 60.9

40 50.3 60.7 64.6 65.9 71.8 62.7

50.3 60.4 63.9 63.7 70.8 61.8

(HSD: N = .5, P = 1.0, P@N = 1.5, and N@P = 1.0)

5



Table 4

Empirical Power (Correlation Coefficient X Procedure).

Analysis Procedure

Correlation

Coefficient

ANOVA Two-Block Four-Block Eight-Block

ANCO VA

.0 50.4 50.1 49.4 47.9 48.7 49.3

.5 50.3 56.4 58.3 57.2 59.6 56.3

.7 50.1 62,7 67.6 67.2 75.9 64.7

.9 50.3 72.6 80.4 82.5 99.0 76.9

50.3 60.4 63.9 63.7 70.8 61.8

(HSD: C = .9, P = 1.0, P@C = 2.1, and C@P = 1.9)

16

14
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Table 5

Empirical Power (Sample Size X Correlation Coefficient)

Correlation Coefficient

Sample

Size .0 .5 .7 .9

8 49.4 55.3 63.2 75.8 60.9

40 49.1 57.3 66.2 78.0 62.7

49.3 56.3 64.7 76.9 61.8

(HSD: N = .5, C = .9, C@N = 1.2, and N@C = .9)

Tukey's Honest Significant Difference (HSD) was used for multiple comparisons.

ThefiHSDs for the respective main effect and simple effect comparisons were reported at

the bottom of the mean tables. The following tables provide the results of multiple

comparisons for main effects.

1 7



Table 6

MullipleComparisons le Size

Alpha = .05 df = 12 MSE = .4272

Critical Value of Studentized Range = 3.081

HSD = .5

Means with different letters are significantly different.

Means N Sample Size

A 62.7 20 40

B 60.9 20 8

Table 7

Multiple Comparisons (Correlation Coefficient

Alpha = .05 df = 12 MSE = .4272

Critical Value of Studentized Range = 4.199

HSD =.9

Means with different letters are significantly different.

Means N Corr. Coeff.

A 76.9 10 .9

B 64.7 10 .7

C 56 3 10 .5

D 49.3 10 .0

is
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Table 8

Multiple Comparisons (Procedure)

Alpha = .05 df = 12 MSE = .4272

Critical Value of Studentized Range = 4.508

HSD = 1.0

Means with different letters are significantly different.

Means N Procedure

A 70.8 8 ANCOVA

B 63.9 8 Four-Block

B 63.7 8 Eight-Block

C 60.4 8 Two-Block

D 503 8 ANOVA

The results show that all pair-wide main effect comparisons are significant except for that

between the four-block and eight-block procedures. The multiple comparison for simple

effects can be done by simply examining whether or not the difference between two

means exceeds the corresponding HSD value offered at the bottom of the mean tablesif

it does, the comparison is significant.

Conclusions and Implications

Based on the results, we summary:

A. The power increases as the number of subjects increases or the correlation coefficient
increases.

is
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B. For p = 0 and n=8, neither the block design nor the ANCOVA is more powerful
than the one-way analysis of variance.

C. For p =0 and n=40, the five procedures yield approximately the same power.

D. The optimal number of blocks increases as the number of subjects increases or the
correlation coefficient increases.

E. The ANCOVA is the most powerful design when p > .5.

This study does not include the treatment-by-block interaction in the block design

since the interaction does not exist in the population. Future study can examine the

effects of including the interaction using the same computer simulation system, or, by

varying the parameters of the population, examine the effects of including and excluding

the interaction when the interaction does exist in the population. The greatest

contribution of this study might not be the specific results reported here, but the

potential for examining many other situations. This computer simulation system can be

used to simulate a whole multitude of relevant studies with minor modifications; these

include investigating other criteria such as the Type I error, examining other levels of the

experimental conditions, and testing other blocking methods in addition to the post-hoc

blocking used in this study.
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APPENDIX

Exec File

/* */

ADDRESS COMMAND
"ERASE PVALUE DATA A"
SEED = 123456789
TIME = 1
DO WHILE TIME < 2501
SEED = SEED + 99999
"EXECIO 1 DISKW" NEWSEED DATA A "(STRING" SEED
"EXEC SAS G2N40"
"ERASE NEWSEED DATA A"
TIME=TIME+1
END
"EXEC SAS G2N4OP"

First SAS Program

CMS FILEDEF INDATA DISK NEWSEED DATA A;
CMS FILEDEF PVALUE DISK PVALUE DATA A (LRECL 133 BLKSIZE 133
RECFM FBS;
CMS FILEDEF SASLIST DISK G2N40 LISTING A;
DATA BIVNORM (DROP=I);

INFILE INDATA;
INPUT SEED 1-9;
RETAIN SEED;
DO I=1 TO 40;

GROUP=1;
X=RANNOR(SEED);
Y=.0*X+SQRT(1-.0**2)*RANNOR(SEED);
OUTPUT;

END;
DO I=1 TO 40;

GROUP=2;
X=RANNOR(SEED);
f=.0*X+SQRT(1-.0**2)*RANNOR(SEED);
1=0.444+1*Y;
OUTPUT;

END;
PROC SORT;

BY GROUP X;
DATA BIVNORM;

SET BIVNORM;
IF N < =20 OR (_N_>=41 AND _N_<=60) THEN B2=1;
ELSE B2=2;
IF N_<=10 OR (_N >=41 AND THEN B4=1;
ELSE IF N_<=20 OR

_N_<=50)
(_N_>=51 AND THEN B4=2;

ELSE IF _N_<=30 OR
_N<=60)

(_N_>=61 AND _N_<=70) THEN B4=3;

24



23

ELSE B4=4;
IF _N_<=5 OR (_N_>=41 AND _N_<=45) THEN B8=1;
ELSE IF N <=10 OR (_N >=46 AND N <=50) THEN B8=2;
ELSE IF N <=15 OR (_N->=51 AND -N:<=55) THEN B8=3;
ELSE IF :N:<=20 OR (_N:>=56 AND 2N<=60) THEN B8=4;
ELSE IF N <=25 OR (_N >=61 AND N <=65) THEN B8=5;
ELSE IF N <=30 OR (_N->=66 AND N-<=70) THEN B8=6;
ELSE IF :N:<=35 OR (21:>=71 AND :N:<=75) THEN B8=7;
ELSE B8=8;

PROC PRINT;
PROC CORR DATA=BIVNORM;

VAR X Y;
BY GROUP;

PROC GLM;
CLASS GROUP;
MODEL Y=GROUP/SS3;

PROC GLM;
CLASS GROUP B2;
MODEL Y=GROUP B2/SS3;

PROC GLM;
CLASS GROUP B4;
MODEL Y=GROUP B4/SS3;

PROC GLM;
CLASS GROUP B8;
MODEL Y=GROUP B8/SS3;

PROC GLM;
CLASS GROUP;
MODEL Y=GROUP X/SS3;

DATA;
INFILE SASLIST;
INPUT WORD1 $ WORD2 $ @;
FILE PVALUE MOD;
IF WORD1 = 'X' AND WORD2 ='40' THEN DO;

INPUT MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
INPUT Y $ N MEAN STDDEV;
PUT MEAN 6.4 STDDEV 6.4 @;
END;

ELSE IF WORD1="X" AND WORD2 = '1.00000' THEN DO;
INPUT CORR;
PUT CORR 6.4 @;
END;

ELSE IF WORD1="GROUP" AND WORD2 = '1' THEN DO;
INPUT SS MS F PR;
PUT PR 6.4 @;
INPUT BLOCK $ DF SS MS F PR;
PUT PR 6.4 @;
END;



Second SAS Program

CMS FILEDEF INDATA DISK PVALUE DATA A;
DATA PVALUE;
INFILE INDATA;
INPUT (G1XMEAN G1XSD GlYMEAN G1YSD G1CORR G2XMENA G2XSD G2YMEAN

G2YSD G2CORR GROUP1B BLOCK1B GROUP2B BLOCK2B GROUP4B
BLOCK4B GROUP8B BLOCK8B GROUPANC BLOCKANC) (20* 6.4);

TOTAL=0;
GlBSG=0;
B1BSG=0;
G2BSG=0;
B2BSG=0;
G4BSG=0;
B4BSG=0;
G8BSG=0;
BSBSG =0;
GANCSG=0;
BANCSG=0;
TOTAL=1;
IF GROUP1B <= 0.05 THEN G1BSG=1;
IF BLOCK1B <= 0.05 THEN B1BSG=1;
IF GROUP2B <= 0.05 THEN G2BSG=1;
IF BLOCK2B <= 0.05 THEN B2BSG=1;
IF GROUP4B <= 0.05 THEN G4BSG=1;
IF BLOCK4B <= 0.05 THEN B4BSG=1;
IF GROUP8B <= 0.05 THEN G8BSG=1;
IF BLOCK8B <= 0.05 THEN B8BSG=1;
IF GROUPANC <= 0.05 THEN GANCSG=1;
IF BLOCKANC <= 0.05 THEN BANCSG=1;

PROC FREQ;
TABLE G1BSG BANCSG;

PROC SUMMARY DATA=PVALUE;
VAR G1XMEAN BANCSG;
OUTPUT OUT = DESCRIPT;

PROC PRINT DATA=DESCRIPT;
PROC UNIVARIATE DATA=PVALUE PLOT NORMAL;

VAR G1XMEAN BANCSG;


